Meson-Meson and Meson-Baryon Interactions in Lattice QCD

Takumi Doi

(RIKEN BNL Research Center)

In collaboration with

Toru T. Takahashi (YITP) Hideo Suganuma (Kyoto U.)

Introduction

- Hierarchical structure in hadron physics (commonly appear in physics...)
 quarks/gluons
 - → [QCD] → hadrons (mesons/baryons)
- Fundamental theory

 → [Nuclear potential] → nucleus,
 nuclear matter

(known only phenomenologically)

How can we understand the interaction between hadrons from the fundamental theory, QCD?

Introduction

- We employ lattice QCD
 - Direct calculation from QCD, no model assumption
 - Nonperturbative framework

Lattice QCD succeeded!

quarks/gluons hadrons nucleus [QCD] Nuclear int.]

Short distance ←→QCD

- Meson-meson, meson-baryon interactions
 - What kind of short range interaction appear? Color-magnetic int.?
 - Useful for study of multi quark physics, exotics?
- Nuclear force between baryons → next talk by Takahashi

Formalism

 Measure the energy of two hadron states and observe the shift of energy from the potential

$$\begin{split} \Pi_{BM} &= \langle J_B(\vec{x},t) J_M(\vec{y},t) \bar{J}_B(\vec{x},0) J_M^\dagger(\vec{y},0) \rangle \simeq \lambda_B^2 \lambda_M^2 \exp(-M_B t) \\ \Pi_B &= \langle J_B(t) \bar{J}_B(0) \rangle \simeq \lambda_B^2 \exp(-M_B t) \\ \Pi_M &= \langle J_M(t) \bar{J}_M(0) \rangle \simeq \lambda_M^2 \exp(-M_M t) \end{split} \\ \Delta M &= M_{BM} - M_B - M_M t$$

Focus the energy difference ∆M to improve S/N

$$R_{BM} = \langle \Pi_{BM} \rangle / [\langle \Pi_{B} \rangle \langle \Pi_{M} \rangle] \simeq \exp(-\Delta M_{BM})$$

 $R_{MM} = \langle \Pi_{MM} \rangle / [\langle \Pi_{M} \rangle \langle \Pi_{M} \rangle] \simeq \exp(-\Delta M_{MM})$

Formalism

- Potential: V(r)
- How can we define the distance "r" between two hadrons?

3 M

- adopt one static (heavy) quark in each hadron
 - Dynamics of quark propagation can be accessed from other light quarks

C.Michael, P.Pennanen PRD60(1999)054012 M.S..Cook, H.R.Fiebig hep-lat/0509025

c.f. all quarks are static

F.Okiharu, H.Suganuma, T.T.Takahashi PANIC2005@SantaFe PRL94(2005)192001

Propagator and Diagrams

Operator $J_M = \bar{Q}i\gamma_5q^3$ $J_B = \epsilon_{abc}(q_a^{1T}C\gamma_5q_b^2)Q_c$

10/25/2005

Q: heavy (static) quark q: light quark

Note: propagator of static quark can be written by links

If q³=q¹(or q²) in flavor space, the correlation function includes exchange diagram

Otherwise, only no-exchange diagram contributes

Lattice QCD parameters

Gauge Configurations

- Standard Wilson plaquette action
- β =5.7 \rightarrow a⁻¹=1.1GeV
- $V = 20^3 \times 24 \rightarrow (3.7 \text{fm})^3 \times 4.4 \text{fm}$
 - Large volume to analyze multi hadrons
- #(gauge config) =~ 200 configs

Fermion action

- Wilson fermion at the quenched level
- κ =0.1600, 0.1625, 0.1650 → $m\pi$ = 500-700MeV
- Average over 2-4 spacial configurations are taken in order to enhance the statistics

Numerical Results: Effective mass plot of R_{BM}, R_{MM}

Baryon-Meson

Meson-Meson

Very weak interaction regardless of distance "r"

r=0.18fm & 0.78fm

Without exchange diagrams

$$R_{BM}=<\Pi_{BM}>/[<\Pi_{B}><\Pi_{M}>]\simeq \exp(-\Delta M_{BM})$$
 etc. 10/25/2005 PANIC2005@SantaFe

Numerical Results: Effective mass plot of R_{BM}, R_{MM}

Baryon-Meson

Meson-Meson

r=0.18fm & 0.78fm

Very weak interaction Wit regardless of distance "r" even when w/ exchange diagram

With exchange diagrams

Potential between two hadrons

Baryon-Meson

Meson-Meson

Interaction is very weak for both of baryon-meson and meson-meson.

Dependence on the quark mass is also weak

Preliminary

Nontrivial feature of heavy-light hadrons?

Summary

- We have investigated the meson-meson and meson-baryon interactions from lattice QCD
 - Define the distance between two hadrons adopting heavy (static) quark in each hadron
 - Correlators with & w/o exchange diagram have been analyzed
 - Large Volume simulation with V=(3.7fm)³ X 4.4fm
- We have not observed significant interaction for both of meson-meson and meson-baryon
 - Including/Excluding the exchange diagram yields very small effects
 - Does this feature stem from the adopting the heavy quark?
 - Evaluation of lattice artifact is in progress
 - Is this feature specific only meson-meson & meson-baryon?
 - Analysis for baryon-baryon interaction → next talk